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Abstract 33437 
A semiclassical  theory of cesium ion-neutral  s ca t t e r ing  with charge 

exchange is  presented. The d i f f e r e n t i a l  s ca t t e r ing  cross sec t ion  is 

presented and integrated t o  obtain t o t a l  cross  sec t ion  and momentum-transfer 

cross section. The t o t a l  cross  sect ion ca lcu la t ion  gives good agreement 

with experiment. The momentum-transfer cross  section, when compared i n  

. .  

terms of ion mobili ty i n  the  low f i e l d  l imi t ,  a l s o  gives good 

with experiment. 

Introduction 

Solutions t o  thermal plasma t ransport  problems, such as those that 

arise i n  thermionics, require  values f o r  t he  energy-dependent d i f f e r e n t i a l  

cross sect ions 

the  form 

of the  various possible p a r t i c l e  interact ions.  In tegra ls  of 

must be evaluated where o ( E , 8 )  i s  the  d i f f e r e n t i a l  cross sect ion,  E is  t h e  

r e l a t i v e  energy of co l l i s ion ,  8 

mass, and g(8)  i s  d ic ta ted  by t ransport  theory. 

i s  t he  scatCering angle i n  the  center of 

This paper i s  a presentat ion of a ca lcu la t ion  of a ( ~ , 8 )  f o r  the  in t e r -  

ac t ion  of cesium ions with neut ra l  atoms and the  subsequent in tegra t ion  of 

t he  above i n t e g r a l  f o r  g(8)  = 1 and g(8) = 1 - cos 8. The first case 

gives the  t o t a l  s ca t t e r ing  cross  section, t he  second, t he  momentum-transfer 
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cross section; t he  lat ter is  required t o  obtain the  ion mobili ty i n  the  low 

f i e l d  l i m i t .  

son with experiment can only be made i n  terms of t o t a l  s ca t t e r ing  cross sec t ion  

and ion mobility. 

Since u(e ,6 )  has not been determined experimentally, a compari- 

This comparison w i l l  i l l u s t r a t e  t h e  r e l a t i o n  of beam measure- 

ments ( t o t a l  cross sect ion)  t o  ion mobility. 

Charge-Exchange Phenomena 

A cesium ion  moving past  a cesium atom may exchange charge, t h e  outermost 

e lectron making a t r a n s i t i o n  from t h e  ground state of one ion core t o  t h e  

1 other ,  The r e s u l t s  of a calculat ion of t h i s  t r a n s i t i o n  probabi l i ty  a re  

presented i n  figure 1. The minimum atomic separation during a co l l i s ion ,  R, 

has an upper l i m i t ,  Re, beyond which the  charge exchange probabi l i ty ,  Po, 

rap id ly  drops t o  zero. The energy dependence of Re i s  given by 
1 

where A and B are constants dependent on atomic s t ruc ture .  The exchange 

2 probabi l i ty  may be approximated by 

Po = 1 / 2  when R < - Re I) 3 = 0 when R > Rc (1) 

Polar izat ion Effect  

If there  were no def lect ion of t he  ion path past  t he  atom, t h e  t o t a l  

charge-exchange cross sect ion ox(€) would obviously be given by 

( 2 )  
2 ox(€) = ( A  - B I n  E )  

This energy dopeodence i s  indeed found a t  c o l l i s i o n  energies greater than a 

f e w  electron volts; however, a t  lower c o l l i s i o n  energy t h e  ion path i s  curved 

s igni f icant ly  toward the atom because of t h e  in te rac t ion  of t h e  ionic  f i e l d  

with the  induced atomic multipoles. 

expansion i s  t h e  dipole', which gives 

The leading term i n  the  cesium multipole 

(3) 
v 
r 

u = - -  
4 ( r )  

, 
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f o r  the  in te rac t ion  poten t ia l  U where r i s  the  distance between the  

ion and the  atom (V = e 2 & '  where e i s  the  e lec t ron  charge and a is the  

atomic po la r i zab i l i t y ) .  

of c loses t  approach, R, is  given by 

( r )  

The re l a t ion  between impact parameter, b, and distance 

for t h e  monopole-dipole interact ion.  The geacml2%zd d i f f e r e n t i a l  s ca t t e r ing  

cross section, (J( E, e) ,  computed3 by c l a s s i c a l  methods for the  polar izat ion 

in te rac t ion  po ten t i a l  is  presented i n  f igu re  2. The sca t t e r ing  angle 8 is  

i n  the  center of mass system. 

Semiclassical D i f f e ren t i a l  Scat ter ing Cross Section f o r  

Charge-Exchange and E las t i c  Scat ter ing 

Equations (1) and (4) may be combined3'* with the  integrated o r b i t  equa- 

t i o n  and t h e  c l a s s i c a l  polcr izat ion cross  sect ion of f igure  2 t o  give the  

d i f f e r e n t i a l  charge-exchange cross section, ox( € , e ) ,  and the  d i f f e r e n t i a l  

e l a s t i c  s ca t t e r ing  cross section, oe( € , e ) ,  as follows : 

o , ( E , @ )  = POD( €,n - e )  

De(€,@) = (1 - po)&,e) 

(5)  

( 6 )  
i 

I n  equations (5) and (6), 8 

of mass system. The change i n  angular dependence from 8 t o  I[ - 8 i s  

required i n  equation (5) ,  since the p a r t i c l e  i d e n t i t i e s  as ion and atom 

reverse during the  charge-exchange interact ion.  

is  the apparent s ca t t e r ing  angle i n  the  center 

The d i f f e r e n t i a l  charge-exchange cross sec t ion  and the  d i f f e r e n t i a l  

e l a s t i c  s ca t t e r ing  cross sect ion are presented i n  f igure  3. The peak on t h e  

r i g h t  s ide  of t he  figure is  due t o  charge exchange. 

height on the  l e f t  i s  a r e s u l t  of the  c l a s s i c a l  approximation. A more exact 

treatment should y ie ld  a limited value of cross sec t ion  f o r  zero angle. The 

The peak of i n f i n i t e  
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-% 
minimum angle f o r  which t h e  c l a s s i c a l  approximation i s  val id ,  8 , i s  presented 

i n  f igure 4; .it i s  determined from uncertainty considerations. 

Total  Scat ter ing Cross Section 

The t o t a l  sca t te r ing  cross sect ion w i t h  charge exchange could be obtained 
8 

by determining the area under a curve of the type shown i n  f igu re  3. Since 

the d i f f e r e n t i a l  s ca t t e r ing  cross sect ion increases without l i m i t  as 0 

approaches zero, t he  area must be determined as a function of 

t r a r i l y  chosen lower l i m i t  t o  the sca t t e r ing  angle. 

determined by the  minimum detectable  sca t t e r ing  angle i n  a beam sca t t e r ing  

em, an arbi-  

I n  pract ice ,  em i s  

apparatus. The t o t a l  sca t te r ing  cross sec t ion  observed i n  t h i s  apparatus 

would be 

&T( €,em) = 2fi [ ae( E,€J)sin 0 d0 + ax( c,B)sin 0 d0 

If we require Om < eC, where eC is  the smallest s ca t t e r ing  angle at  which 

the  ion  and atom a t  t h e i r  point of c loses t  approach are within the  c r i t i c a l  

radius  for  charge exchange, t he  t o t a l  s ca t t e r ing  cross sect ion reduces t o  the 

By re fer r ing  t o  f igure  4, we see t h e  region where 

quantum l i m i t ,  e*, but  less than t h e  c r i t i c a l  angle f o r  the onset of bhmge 

em i s  la rger  than the 

exchange t o  be t h e  region of app l i cab i l i t y  of e p s t i o n  ( 7 ) .  

Diffusion Cross Section and Mobility 

The quantity most of ten  needed f o r  charge t ranspor t  calculat ions i s  the 

d i f fus ion  cross sec t ion  0 ( E ) ,  sometimes ca l led  the momentum-transfer cross  

section, which may be expressed as 

d 
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(T (E) = 2nj oe(E,8)(1 - cos 8 ) s in  8 de + ox(~,8)(l - COS 8 ) s in  0 de 
0 d 

Symmetry considerations i n  the above in tegra ls  yield 

or,  f o r  l o w  pergy, we may use equation ( 4 )  t o  obtain 5 

The expression fo r  ion mobility, 1.1, i n  i t s  own gas2 is 

where m i s  atomic mass, kT i s  vapor thermal energy, N i s  vapor pa r t i c l e  

density, and Q i s  the following average of ~ ~ ( 6 ) :  
- 

m 
E - -  

Inser t ing equation (10) i n  equation ( 1 2 )  and performing an approximate 

6 integrat ion gives 

Q z 2A2 - 4AB 

where and 

respect ively . 

($ - &  + In  kT) + B2[4@ - % ) l n  kT + 2( ln  kT)' + &  1 
x axe the  numerical constants 0.577 . . . . . and 2.492 . . . . , , 

Comparison with Experiment 

The t o t a l  cross section expressed by equation ( 7 )  is compared with the  

UAC experiments' i n  f igure  5. 

i n  equation ( 7 ) ,  is d i f f i c u l t  t o  evaluate, and t h i s  can e f f ec t  t he  locat ion 

The angular resolution, a sens i t ive  parameter 
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of the curve with respect t o  the  ordinate. 

of the  data appear t o  confirm the  theore t ica l  prediction of 

The experimental energy dependence 
- 1  
2- . E 

2 Equations (11) and (13) give a value6 of 0.07 L0.03 cm /v-sec fo r  t he  

2 cesium ion mobility i n  cesium vapor compared with the  0.075 cm v-sec measured 

by Chanin and Steen' and 0.065 cm /v-sec measured by Dandurand and Holt . 
The var ia t ion i n  the  calculated value i s  the r e s u l t  of spread i n  the  various 

sets of charge-exchange data . 

2 9 

5 

Concluding Remarks 

A detailed presentation of the  co l l i s ion  and mobility theory outlined i n  

t h i s  paper are  available elsewhere 396. 

t o  r e l a t e  beam measurements of t o t a l  sca t te r ing  cross section' and t o t a l  

charge-exchange cross section5 t o  each other and t o  ian mobility. 

mobility discussed here i s  fo r  the  low f i e l d  l i m i t  a t  which the thermal 

energy of t h e  ions i s  greater than the  energy they gain from the  applied 

e l e c t r i c  f i e l d  between col l is ions.  

for use i n  any par t icular  thermionic diode problem i s  not intended. 

The purpose of t h i s  review has been 

The 

Inference that t h i s  i s  a su i tab le  mobili ty 
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M l n l m m  atomic separath during collision, R 

Figure 1 - Resonance charge-exchangeplnbfllly. 
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Figure 2. - Classkal differential scattering cross 
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section for polarkation potantill 
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Figure 3. - Differential elastic scattering cross section and 
differential charge-exchange cross section for cesium ions 
in cesium vapor. Collision energy, 4025 electron vdt. 
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Figure 4. - Critical particle scattering angle et and lower limit 
for valid classical calculation e* for cesium. 

lon-atom relative energy, E, ev 

Figure 5. - The total scattering cross section for cesium ions in cesium 
vapor. 


